Развитие волоконно-оптических систем передачи
Основные достижения и возможности ВОСП связаны с появлением полупроводниковых лазеров и волоконных световодов с небольшим затуханием.
Первые лазеры( л=0,85 мкм) для волоконно-оптических линий связи (ВОЛС) имели невысокую эффективность, так как работали в первом окне прозрачности волокна. Первые волоконные световоды (многомодовые со ступенчатым профилем показателя преломления) из-за большой межмодовой дисперсии имели полосу пропускания не более 20 МГцкм. Многомодовые волоконные световоды с градиентным профилем показателя преломления обеспечили увеличение полосы пропускания до 160 МГцкм.
Разработка приемопередающей аппаратуры, работающей во втором окне прозрачности (л=1,3 мкм) позволила снизить затухание в многомодовых волокнах с 3 дБ/км ( л=0,85 мкм) до 1 дБ/км (л=1,3 мкм). Одновременно у многомодовых волокон повысилась и полоса пропускания до 500 МГцкм.
Дальнейшее развитие ВОЛС в направлении „быстрее и дальше“ связано с одномодовым этапом истории ВОЛС. Одномодовые волокна позволили значительно повысить скорость передачи информации за счет отсутствия межмодовой дисперсии, а переход в третье спектральное окно (л=1,55 мкм) позволил снизить потери в одномодовых волокнах с 0,35 дБ/км (л=1,31 мкм) до 0,2 дБ/км (л=1,55 мкм).
Открывшиеся возможности по наращиванию скорости и дальности передачи информации привели к значительному прогрессу цифровых систем передачи информации (сети синхронной цифровой иерархии — SDH). Потребность в развитии таких систем была очень высокой, так как объем передаваемого трафика непрерывно увеличивался, и это стимулировало работы по дальнейшему совершенствованию ВОЛС. Было показано, что увеличению скорости и дальности передачи информации в одномодовых системах препятствует хроматическая дисперсия в волокнах. Эта проблема была успешно решена при разработке оптических волокон с нулевой дисперсией в области длин волн 1,31 мкм (волокна типа G.652) и смещенной в области длин волн 1,55 мкм нулевой дисперсией (волокна типа G.653). Для увеличения дальности передачи информации стали использоваться регенераторы сигнала, которые преобразовывали оптический сигнал в электрический, восстанавливали его форму, а затем формировали оптический сигнал для дальнейшего прохождения по волоконному тракту.
Использование оптических усилителей (ОУ), которые позволили эффективно увеличить дальность передачи, стало следующим этапом развития ВОЛС. ВОЛС с оптическими усилителями и волокном G.653 обеспечивали передачу информации со скоростями до 40 Гбит/с на расстояние более ста километров.
Появились системы со спектральным уплотнением, в которых используется такое свойство волоконных систем, как возможность независимой передачи информации на разных длинах волн, в разных каналах. Первые ВОЛС со спектральным уплотнением работали в разных спектральных окнах (1,31 мкм и 1,55 мкм). Но системы со спектральным уплотнением наиболее эффективны в третьем спектральном окне (1,55 мкм), так как в этом случае один ОУ усиливает все информационные каналы, расположенные в окне. Реализация уникальных возможностей таких систем (плотного спектрального уплотнения — DWDM и высокоплотного спектрального уплотнения — HDWDM), в свою очередь, потребовала решения еще одного ряда фундаментальных задач.
Во-первых, это проблема четырехволнового смешения. Наиболее эффективный путь построения ВОЛC со спектральным уплотнением — увеличение числа каналов. При увеличении дальности передачи приходится усиливать оптические сигналы в каждом канале, и при большой суммарной мощности в волокне начинают проявляться нелинейные эффекты. Для DWDM-систем наиболее существенным является эффект четырехволнового смешения, когда в спектре сигнала появляются нежелательные составляющие, перекрестные помехи. При спектральном способе дешифрации оптических сигналов это может привести к значительным ошибкам в передаче информации. Четырехволновое смещение наиболее сильно сказывается в случае равенства скоростей распространения оптических сигналов в каналах. По этой причине оптические волокна со смещенной нулевой дисперсией (G.653) не используются в DWDM-системах, а для уменьшения влияния четырехволнового смешения были разработаны волокна со смещенной ненулевой дисперсией (G.655) и технология компенсации хроматической дисперсии.
Во-вторых, кроме специальных оптических волокон для DWDM-систем были разработаны высокостабильные лазеры с узкой спектральной линией, а также спектральные мультиплексоры/демультиплексоры. Этот цикл работ потребовал значительного продвижения в физике и технологии лазеров и интегрально-оптических схем.
Дальнейшее развитие ВОЛС шло как по пути увеличения числа сравнительно „низкоскоростных“ (несколько Гбит/с) каналов в DWDM- и HDWDM-системах, так и по пути дальнейшего увеличения скорости передачи информации в информационном оптическом канале. В настоящее время серийно выпускаются системы со скоростью передачи 40 Гбит/с, ведутся эксперименты на 100 Гбит/с. Однако уже на скоростях более 10 Гбит/с появляются ограничения, связанные еще с одним видом временной дисперсии — поляризационно-модовой дисперсией (PMD). Решение этой проблемы потребовало проведения фундаментальных исследований и значительного продвижения в области технологии изготовления волоконных световодов и оптических кабелей, монтажа линии и контроля параметров тракта.
В последнее время повышенное внимание уделяется не только высокоскоростным магистральным ВОЛС, но и локальным системам. Массовые локальные волоконно-оптические системы передачи должны обеспечить загруженность региональных и магистральных ВОЛС, повысить эффективность волоконно-оптических сетей связи. При этом целесообразно использовать многомодовые волоконные световоды. Появление новых высокоэффективных лазеров для локальных сетей позволяет значительно повысить скорость и дальность передачи информации в ВОЛС на основе многомодовых волокон. Однако при этом появляется проблема „центрального провала“ в многомодовых волокнах, связанная с несовершенством технологии изготовления заготовок для этих световодов. Значительные отклонения профиля показателя преломления от оптимального в центре волокна вызывали резкое увеличение дисперсии в случае использования современных лазеров. Эта проблема многомодового волокна была решена, что открыло новые возможности в развитии локальных ВОЛС и волоконно-оптических систем в целом.
Решение фундаментальных проблем было подкреплено развитием сопутствующих технологий, которые и обеспечили продвижение ВОЛС к потребителям по пути „быстрее-дальше“. Наиболее существенные успехи наблюдались в технологии производства волоконных световодов и кабелей. Промышленность производит все необходимые виды оптических волокон и кабелей, обеспечивающие самые высокие параметры ВОЛС. При этом рост производства оптических волокон беспрецедентен: с 6,9 млн. км в 1990 г. до 76,6 млн. км в 2000 г. — в 11 раз. Современные технологии монтажа и измерения параметров волоконного тракта полностью соответствуют высокому уровню современных ВОЛС. Достаточно сказать, что сварочные аппараты, например, FSM-40S, обеспечивают эффективный монтаж волоконного тракта с потерями в месте сварки менее 0,02 дБ. Благодаря этому, а также развитию высоких технологий производства оптических передатчиков и приемников, сетевых технологий и технологий спектрального уплотнения и обеспечены высочайшие темпы развития ВОЛС. Прогнозы на самую ближайшую перспективу составят порядка 725 Тбит/с на один ВОК – а это значительно больше, например, расчетной потребности для Европы – 9 Тбит/с к 2005 году. Уместно напомнить, что в Украине в ближайшем будущем мы столкнемся с перепроизводством сетевой емкости (как сейчас в Европе), если будем развертывать системы SDH’WDM в том же темпе, что и в последние 10 лет – это один из парадоксальных выводов анализа перспектив развития ВОЛС.